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ABSTRACT

The heat checking phenomenon in mechanical seals resulting from

L .
T T O P

the passage of asperities traversing at a high speed over the surface N
of a seal ring is solved with a thermomechanical model of a semi-
infinite medium subjected to frictional heating over a moving contact
zone. The traverse speed is considered to be the same as the rubbing
;4 speed for the current problem. The two-dimensional theory depicts
= essentially a single moving line contact with uniform or parabolic
f; pressure distribution over the narrow width. For the actual asperity,
) single or periodic, the contact area is best described by a “spot" that :;
may be approximated with a circular or a rectangular geometry. For

such a configuration, a three-~dimensional theory is developed. In the

present analysis the general solutions are obtained for arbitrary
ii distribution of contact loads. Numerical solutions are given for both N
%
N uniform and non-uniform pressure distributions. The roles of material ~

properties and operating variables are expressed in terms of dimension-
less parameters. The double Fourier transform and the Green's function
methods are used throughout the analysis. Numerical schemes for the ‘
;A corresponding analytic solutions of integral form are developed. =1

For a constant traversing speed of 15 m/s (600 ips) and a Coulomb o
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coefficient of 0.5, the two-dimensional theory for a single moving

Pt e te e

w_ asperity concludes that the crack could initiate at a normal average
pressure of 482 MPa (70,000 psi) for the case of a parabolic pressure

distribution over the narrow width of 1 mm (0.04 in.). The three-
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area of radius 0.25 mm (0.01 in.) yields a critical average pressure of
196 MPa (28,400 psi) at the fracture threshold.

The investigations show that the distribution of the pressure over
the contact zone is more of a deciding factor than the shape of the
contact area. In addition, heat checking from cyclic asperity excita-
tion is worse than that from a single asperity excitation. However,
all results predict a below-the-surface crack initiation. Typically,
for an asperity with the half-width, or radius, of the contact area
equal to 0.5 mm (0.02 in.), the critical location for crack initiation
is 0.05 mm (0,002 in,) below the surface. The result in a sense
justifies the use of linear thermoelastic theory, since at this depth
the material considered remains in an elastic state,

The cumulative effect is demonstrated with a sequence of three
asperities spaced apart by a distance of x' = 12 (12 times the asper-
ity characteristic dimension a). As compared with 196 MPa (28,400 psi)
for a single moving asperity, the critical average pressure becomes 88
MPa (12,700 psi) which is much lower. Consequently, the possibility of
initiating cracks is higher when periodic moving asperities can occur

in the contact zone than when only a single asperity can occur,
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NOMENCLATURE

i a Asperity characteristic dimension, the half width of the
rectangular contact area in the direction of traverse or
radius of the circular contact area

b Half length of the rectangular contact area perpendicular
to the direction of traverse

| c Specific heat

D Differential operator with respect to X3

k Thermal conductivity
"
. 1/2

My Dilatational speed ratio [= V(p/(x + 2u))"" "]

M Shear speed io [= V(p/ )1/2]

2 peed ratio (p/u

‘ p Load distribution
: Po Average pressure over the contact area
- qq Heat flux through the contact area
i
: Ri Traction over the contact area

t Aspect ratio (b/a) or time coordinate
I T Temperature field
: {u;}, w Displacement field
- v Traverse speed of asperity (-x; direction)
!f {x} Coordinates fixed to the moving asperity
E?E ) Fourier transform of a variable
; 3 Partial derivative with respect to x; coordinate
X
- a Coefficient of thermal expansion

sij Kronecker delta
i‘ ¢ Dimensionless temperature field (= Tk/qoa) 4
A ix :3:'-:'-#
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Thermal diffusivity

Peclet number (= Va/k)

Lame coefficient
Lameé coefficient, modulus of rigidity

Coulomb coefficient of friction
Mass density
Stress field

Mechanical stress field

Thermal stress field
Dimensionless coordinates (= xi/a)

Period of asperity occurrence
Spacing of periodic asperities (= Vt/a)
Number of moving asperities

Asperity contact regions, j = 1,2,...,N

Maximum combined thermomechanical principal stress

Maximum mechanical principal stress

Maximum thermal principal stress

B
PO

ST
Vi Y
ot a's




&

CHAPTER 1
INTRODUCTION AND LITERATURE SURVEY

1.1 Purpose of the Investigation

The investigation uses several mathematical models to study the
possibility of fracture initiation by dry friction and the configura-
tion of fracture. The general study of friction cracking has a special
application in marine seals. The purpose of this study is to extend
our understanding of the problem by looking into the thermomechanical
state of strass in a mechanical part resulting from the traversing of a
single asperity or periodic asperities over its surface. The under-
standing of such a failure process could be used to improve the design
of devices such as marine seals by alleviating the problem of friction

cracking.

1.2 General Background

When two bodies are in high speed sliding contact under heavy
loads, the localized contact area is much smaller than the design slid-
ing surface. The resulting pressure in the area can ce higher than the
design pressure by an order of magnitude. Localized hot spots may
occur as a result of excessive frictional heating near the contact sur-
faces. Because of a combination of thermal heating and the mechanical
load, the material may crack in the neighborhood of the contact zone.
This phenomenon is called "heat checking” or "thermocracking". It com-
monly occurs in mechanical seals and brakes as shown in Figures 1.1 and

1.2. In general numerous radial cracks can be observed perpendicular
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Figure 1.1. Radial hairline cracks on the metallic ring

after running against a carbon ring at a high
peripheral speed.
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Figure 1.2. Thermal cracks on the brake shoe.
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to the sliding direction and almost periodically separated along the
circumference. While extensive analysis of thermoelastic effects in
brakes has been studied [1-5]!, the b. % of which is in the railroad
industry, much intensive study of the effects is needed in mechanical
seals. Of concern here will be the face seals located along the pro-
peller shaft in submarines to prevent leakage of sea water througl the
shaft tunnel. Figure 1.3 illustrates one assembly of such a device, in
which the seal consists essentially of two annular rings, one of which
is fixed to the shaft tunnel housing, another is mounted on and rotates
with the shaft. The mating surfaces of the rings therefore are pressed
against each other under spring pressure and rub at a high speed. The
design nominal pressure between the seal rings depends on the type of
vessel and the location of the seal. For instance, a low pressure of
about 100 kPa (14.5 psi) is sufficient for most surface vessels; for
submarines, the pressure required could increase by orders of magni-
tude. Had the pressure been evenly distributed according to design,
the service life of the face seals would no longer be a serious problem

even at a high rubbing speed. However, it is well known that the

actual contact area may only be a small fraction of the nominal area at
the design interface. In other words, a low nominal design pressure ;}j
may very well result in a very high interfacial pressure, thus a very ;?S
high dry frictional force in the actual contact area. The high fric- .}f;

tion would cause locally an extremely high temperature, called

INumbers in brackets denote references. .
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“flash temperature" by Archard [6]. The local contact area is also
called the “red banding" or "hot spot" (7], which has been experimen-
tally demonstrated. In severe cases the temperature can be extremely
high, leading to cracking of the surface [8]. If we use the figure of
10~3 as area ratio (contact area/nominal area)--Burton [9] considered
10~"* as a possible area ratio--a low design pressure of 240 kPa (35
psi) could result in a 240 MPa (35,000 psi) local pressure in the con-
tact zone, a pressure well within the range of fracture initiation with
unfavorable Coulomb coefficients.

The cause of the localization of the contact area, which is in the
province of thermoelastic instability (TEI), will not be considered;
nor will the metallurgical change in the surface layer., It will
suffice to assume that the localization of contact area is due to some
form of asperities, which may be fixed to any of the mating surfaces or
may precess with respect to both, The present work treats the thermo-
mechanical stress state in the part that mates with the one containing
the asperity and the possibility of heat checking therein. The speci-
fic investigation will consider the asperity or asperities being on the
carbon-graphite, which moves relatively on tie face seal of Stellite
I[II. The failure due to heat checking is on the face seal which prior
to the onset of failure is assumed to have no other defect on its con-

tacting surface.

1.3 Related Investigation in Progress

The failure records have shown that the performance life of

devices with pressurized moving contact surfaces becomes drastically

(8))
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reduced whenever the parameters such as the load, sliding speed, or the
temperature field attain certain range of values. There has been
increased emphasis on finding a solution of failure control, experimen-
tally and analytically, of this physical problem in recent years. A
general survey of the problem of cracking through the development of a
frictional hot spot was discussed by Burton [7]. A series of experi-
ments carried out by Sibley and Allen [10] showed photographic evidence
of systematically moving hot patches in the contact zone. Based on the
results in the recent literature t11-15], 1t can be assumed that TEI
precedes thermocracking and that contact is localized at severaf hot
patches, Considerable evidence was also shown by Kennedy [16] to sup-
port this crucial assumption. In his experiment, using the carbon ring
against a metallic mating ring made from 440 C stainless steel, beryl-
T1ium copper or 52100 béaring steel under both dry and liquid lubricated
conditions, the existence of distinct spot asperities on the metallic
ring was observed. It was found that the spots at least in dry opera-

tion tend to remain stationary with respect to the metallic mating ring

of the seal, whether that ring be stationary or rotating. However,
other investigations have shown hot patches moving relative to the mat-
ing ring and stationary on the primary ring [12,13]. In addition,
Burton [14] reported that for an aluminum ring sliding on a glass disk,

the hot spot precessed at a much lower speed than the rubbing speed.

Sl
.t ’l ‘l .l .'l .‘l .l
A AA B eiatacana

The uncertainty of this observed discrepancy on the speed of the moving .

asperities remains, but there is no doubt about the existence of the

LE moving asperities due to TEI on mechanical face seals through the

: effort of all the researchers in this field. Therefore, several -~
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analytical studies of the failure due to the existence of the moving
asperities, which are characterized by high normal and frictional loads
and the resulting thermal heating on the contact surface of the sliding
mechaqical parts, have been in progress.

When the thermal effect is neglected, the study is isothermal.
Yarious analyses of stresses and displacements induced in an elastic
half plane by a concentrated line load moving at a constant speed along
its surface have been developed [17-19]. Eason [21] dealt with several
types of moving surface forces and procured the solution of the mechan-
ical stress and displacement field in a semi-infinite solid. Surface
displacement and temperature field of a convective elastic half space

"under an arbitrarily distributed fast-moving line heat source were
obtained, using integral transform methods, by Ling and Mow [20]. The
problem of thermal stresses [22] and temperature distribution [23] was
examined. A finite element analysis was recently developed by Kennedy
[24] for studying surface temperatures resulting from frictional heat-
ing in sliding systems. He also applied finite element techniques to
study the stresses in the mechanical face seal [25] and showed that the
dominant stresses in the seal components are thermal stresses.

Marscher [26,27] analyzed the thermomechanical stress state in the part
that contains the asperity. A two-dimensional repeated loading phenom-
enon was first studied for stability of contacting surfaces by Burton,
et al. [28,29]. The surface stress component (parallel to the surface)
resulting from a periodic row of moving patches, with width 22 each,
and a spacing of 2m was investigated by Tseng and Burton [30], who

restricted the analysis to the two-dimensional plane stress case. They




concluded from the computed results that the tensile stress would

appear instantaneously with each passage of the heat source.

1.4 Mathematical Model and Analytical Approach

According to the results of the experiment by Kennedy, et al.
(16], the width of the moving asperity was about 0.1 to 1 mm (0.004 to
0.04 in.); while the diameter of a typical marine shaft seal could be
50 om (19.7 in.) or more. Because of this size difference between the
contact area and the seal, as shown in Figure 1.4, the mathematical
model is represented by a half-space subjected to fast-moving Ioéds of
a constant velocity (V). The loads come from a combination of thermal
and traction contributions. Fast moving refers to the case wherein Y
>> x/a, where x and a are defined as the thermal diffusivity and the
half width of the asperity. The investigation starts with the study of
a model with a moving line asperity. For such an asperity a two-
dimensional analysis is adequate to develop the thermomechanical solu-
iions. In order to better model the contact area and periodic excita-
tion of asperities in practice, the research adopts eventually a more
realistic three-dimensional analysis. Since it has been observed that
the lubricated film is continually being broken by small patches of
solid-to-solid contact during seal operation [16], we may as well
assume that the working seals are in dry contact representing the worst
operating condition. In addition, for the worst case, the mating seal
that contains the asperity is regarded as an insulator. The analyses
are based on the general theory of a continuum. The relative speed of

contact surfaces is assumed to be large enough to result in a high
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Figure 1.4. Geometry of the hot spot moving on the metallic C
mating seal.




Péclet number (Va/x). But it is much smaller than the Rayleigh wave,
which for a steel based seal material is approximately 2800 m/s (11 x
10* ips), and justifies the use of the guasi~static theory. Further-
more, since such loading also results in a low dilatation rate, the
uncoupled thermal stress theory is then applicable. From observations
of failed specimens near the surface, it is reasonable to postulate
that the plastic deformation and rupture at the surface are at the
granular or even the subgranular level. The base solid material sub-
jected to the asperity friction is essentially elastic. Consequently,
the linear theory of thermoelasticity holds. The principal advantage
of using the linear theory is the application of the superposition
principle, enabling a delineation in the stress field to one from the
mechanical load of the moving pressure and friction and another from
the moving heat input, a result of the irrecoverable frictional work.
The combined effects will then determine the possibility of fracture
initiation using the tensile fracture criterion. In two-dimensional
analysis, the Green's function approach is used; while in three-
dimensional analysis, the analytical solutions of the mechanical and
the thermal stress fields are solved by means of double Fourier trans-
form. The temperature field is obtained by both the integral transform
and Green's function methods. Numerical results of the corresponding
integral solutions are represented in graphs. Schematic geometries and
detailed analyses are given in the following chapters.

Two-dimensional and three-dimensional models are examined in
Chapters 2 and 3, respectively. The former demonstrates a simpler

means of formulation; while the latter gives a better description of




the physical problem. Both models deal with a single moving asperity.
In Chapter 4, a three~dimensional model of periodic moving asperities
is investigated further. The formulation leads to a general solution
which can be used to justify the results from Chapters 1 and 2.

i Detailed discussions and conclusions are given in Chapter 5 and the

related mathematical background is given in the appendices.

= 1.5 The Uncoupled, Quasi-Static Thermoelastic Theory

The analysis is restricted to the dynamic and coupled theory of an
isotropic linear thermoelastic solid, which can be found in most
) thermoelasticity textbooks [31-36]. In vector form, the displacement
formulation in the absence of body forces and the Duhamel heat equation

[37] with no internal heat generation are

uv25+ (x + u) grad div u - (3 + 2y) agrad T = pi R (1.1)

(3X + 2“) 02 TO ékk

pC ai

I k92T = pcT |1 + (1.2)

where T, is the temperature of the solid in the unstressed state,

N ek is the dilatation rate and T is the temperature rate. Equations

[

-}, (1.1} and (1.2) are simplified by deleting the inertia term, oii for the

E}i quasi-static case and of the mechanical coupliing term,

-.':L (3x + 2y) cz To ékk ~11
: o | =
:7 for the uncoupled theory. Thus the governing equations for the ::?
o uncoupled, quasi-static thermoelastic theory are ;;




uvzu + (X + y) grad div u = (3x + 2y) agrad T, (1.3)

o~

2

CT=2T., (1.4)

Rl

A short discussion follows to justify the use of the quasi-static
uncoupled theory. The mechanical coupling term is considered first.

It can be shown that for steel it is approximately

. - €
k72T = pcT [1+1o5r ﬁ‘-]
0 oT
a

where T is absolute temperature measured in Rankines. For aluminum, it

becomes

kv?T = pcf [1 + 1.8 x 107 T, -e-“-“-] :
al

[f SI units are used, i.e., the temperature is measured in degrees
Kelvin, the coefficients, 10~5 for steel and 1.8 x 10~5 for alu-
minum should be replaced by 1.8 x 10-° and 3.24 x 10~5, respective-
ly. It is argued that, for most cases of a high thermal load, ékk/
aT should be of the order, 0(1), so that the coupling term is negli-
gible except for conditions in which the temperature distributions have
sharp variations or discontinuities in their time histories, which
often occurs during the propagation of thermoelastic waves in the
aftermath of thermal shocks. The similar argument is also made by

Boley and Weiner [38] who rewrote Equation (1.2) as

12
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| ko°T °°T[1+°(3x+§'u') %] .
a

where § is defined by

'|' (31 + 202 o7T
§= 1+ 2u) pC

which has the values 0.029 and 0.014 for aluminum and steel at T =

660°R (corresponding to 367 K), respectively. Further, they showed
that for both cases the coupling is small if
xk ;

> - << 20 . ]

They therefore concluded that the possibility of omitting the coupling
terms depends not only on the fact that the inequality & << 1 must hold

(as it does for most metals), but also on the fact that strain rates

CATAEE ) BN
!

&f : must be of the same order of magnitude as temperature rates times the Eéb
i- coefficient of thermal expansion. ;ii
' The dynamic effect can be a result from either a dynamic loading .
state or a non-steady thermal state in which the time rate of tempera-
» ture change could keep up with the stress waves in the material., It
was stated by Ouhamel [39] that the inertia term can be disregarded if
_ the time rate of change of temperature is slow enough. Parkus [40]
i showed that the significant effect from inertia term can arise only -1
when there is an instantaneous change in the surface temperature or in -

the temperature of the surrounding medium. In fact, the dynamic effect

P

is greatly reduced if the temperature change occurs in a very short, -

but finite, interval of time. This was confirmed by Danilovskaya j}¢

D 13 -
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[41-42], who studied the dynamic effect due to a thermal shock on the

surface of a half-space in detail and demonstrated that the maximum
' dynamic stress is reduced to 86 percent even for the extremely short

duration of heating of 10-'2 seconds. In general, under usual condi-

s tions of heat exchange, the rate of temperature change is small in com-

- parison with the speed of sound in the material. Thus, at any instant,
the thermal stress state can be determined by the instantaneous values
; of the temperature field. Consequently, ther2 is no need to consider
* the inertia force corresponding to the motion of the particles during
‘ the varying thermal expansion, i.e., the inertia term p:(i in Equafion
. (1.1) can be omitted.
1.6 The Brittle Fracture Criteria
i Metals can be generally divided into two categories: (1) ductile
t metals, in which marked plastic deformation commences at a fairly
: definite stress and which exhibits considerable ultimate elongation
. prior to fracture; and (2) brittle metals, for which plastic deforma-
- tion is not clearly evident at fracture. Since the heat checking

phenomenon as evidenced in Stellite IIl and in ceramic materials [43]
. is associated with very little plastic flow, the brittle fracture cri-
B terion is ascertained. Based on the hypothesis enunciated by Griffith
[44] in 1921, the weakening of the material is attributed to the growth
P of minute cracks resulting from an induced stress field. He [45]
E derived the criterion for failure under a biaxial principal stress :
\ field o; and o3 at an arbitrary orientation g with respect to the axis \'
l oy as seen in Figure 1.5, and studied in detail the variation of the -]
- T
s
; * ?3::":':3
» .
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Figure 1.5. Griffith model of microcrack. .
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peripheral stress oy, on the surface of a flat elliptical crack (g =

Ep). He postulated that fracture would result when the maximum periph-
eral stress reaches a characteristic value of the material, His theory
modified by McClintock and Walsh [72], who took into account the fact
that cracks may be expected to close under sufficiently high compres-
sive stresses, is stated as follows. As the normal stress g, acting
across the face of a pre-existing crack causes the crack to close,

i.e., when

9, 31% [(c1 + 03) + (ol - 03) cos 28] < O

or

172 JW2 _

01[(115: +1 + llf] + 0’3[(“? +1 uf] <0 ’

then a compressive fracture [72] will occur when

(ui + 1)1/2 + Uf
6. 04" 0
c 3 1 ("i + 1)1/2 -y

where 9. is the uniaxial compressive strength of the material, e is
the surface coefficient of friction and 9, which is equal to 0.5
tan~! (lluf) and measured from the minor principal stress g; axis, is
the orientation of the crack at which fracture initiation will com-
mer- . If e * 0, 8 » x/4; if ue + @ 8 >0, Thus the direction
of fracture is always inclined at an acute angle to the direction of
the axis of the largest principal compressive stress.

When g, causes the crack to open, i.e., as o, > 0, tension crack-

n
ing occurs, For the case that

16
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fracture initiation occurs when g; = gy where gy is the uniaxial
tensile strength of the material. For this condition of tensile fail-
ure, the crack begins to extend in its own plane in a direction perpen-
dicular to that of the major principal stress g;. While for the case

that

failure takes place if
( -c)2+8o(a +0,) 20
9 7 9% u9% T % ’

and the crack runs towards the o3 axis as in compressive fracture, The
corresponding fracture locus, as shown in Figure 1,6, is well illus-.
trated by McClintock [46]. He also extended the criterion to the
three-dimensional case (see Figure 1.7},

Concerning the crack propagation direction under uniaxial compres-
sion of plates of brittle materials, both analytical and experimental
results from Nemat-Nasser, et al, [73] provide good correlation with
the Griffith's theory. It was shown that, for the wide range of pre-
existing crack orientation, the out-of-plane crack extension initiates
at an angle close to 72° from the direction of the pre-existing crack,
and then curves into a position almost parallel to the maximum axial
compressive stress as shown in rFigure 1.8.

Within the framework of the linear elastic fracture mechanics

(LEFM), three modes of cracking as in Figure 1.9 are often referred.
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Figure 1.6. Brittle fracture under biaxial stress.

Figure 1.7. Brittle fracture solid representing the states of
triaxial stress for brittle fracture.
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- Figure 1.8. (a) Specimen with a number of randomly oriented
5 cracks, and (b) the failure pattern under overall

axial compression.
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0f concern here is the Mode I crack since it is often observed on the
failed seal [16]. Consider a through~the-thickness microcrack of ;:
length 2a in an infinite plate which is subjected to the uniaxial

ultimate tensile stress as shown in Figure 1.10. The maximum stress

occurs near the crack tip at 6 = 0 and has the value of ggg = S
qu572-. Under this cond1;10n, the instability of the microcrack

results in the fracture initiation predicted by Griffith's theory.

------
-----
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Figure 1.9. The three modes of cracking.
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CHAPTER 2

A TWO-DIMENSIONAL MODEL OF A SINGLE MOVING ASPERITY

2.1 Mathematical Model?

In the present model, it is reiterated that the line asperity is
on the insulated mating part of the cracked seal and the speed of the
effective load is subsonic. The geometry of the contact area, as shown
in Figure 2.1 is such a long narrow strip that the width of the area in
the direction of motion is of small order to the radius of the seal
surface. Accordingly, the latter may be represented by a planar half-
space. The problem may then be described by a plane thermoelastic
model as shown in Figure 2.2. The contact load is represented therein
by.a symmetrically distributed pressure over the contact zone., Coulomb
friction is present, resisting the relative motion of the contacting

surfaces, that is, the friction force is in the traverse direction of

the load., Two sets of coordinates are employed: (x; - x;) are fixed to
the seal; (x; - x3) are fixed to the moving load. The boundary values
of this problem are therefore as follows: on the surface boundary xj =
0, there is a combined normal pressure p(x,) and tangential friction
ugp(x)) distributed over the contact zone (-a < x; < a) and the
half-plane is traction-free elsewhere, For the regions at infinity,
regularity conditions hold.

The thermal load on the half-plane comes from the frictional heat-
ing in the contact zone. The mating surface is by postulation adia-

batic. Therefore, all the dissipative energy is accounted for by the

2The present chapter is a revision of [71].




Figure 2.1. Two-dimensional asperity.
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heat input to the seal. The heat loss across the free boundary is also
’ neglected.
The material properties affecting the thermomechanical stress
: field will be the elastic coefficients (E,v), the density of the seal
i' (p), the coefficient of friction (uf). the coefficient of thermal
expansion (a), the thermal conductivity (k) and the thermal diffusivity
(). The parameters characterizing the loading are the pressure dis-

tribution p(x;) over the contact zone and the velocity of the moving

load (V) for the case when the traversin§ speed is the same as the
rubbing speed.

The stress field from the mechanical loads of normal pressure and
friction will at first be computed. The thermal load from the friction
force will then be considered to compute the temperature rise and thus
the resulting thermal stress field. The two sets of stresses should
provide an insight to the separate effects on stresses from the mechan-
ical and the thermal loads. The combined effect from superposiﬁg the

two shall provide the information on impending failure by fracture.

2.2 Mechanical Stress Field

The solutions of the stress fields, corresponding to the mechan-
ical 1oads as shown in Figure 2.2, may be obtained by the method of

impulse response. For that method the stress field {Gc?j} from a

moving normal force of one unit (Figure 2.3) is the impulse response
for the normal pressure while {so:j} from a moving tangential force of ;Eﬁ

one unit (Figure 2.4) is the impulse response for the friction. For




Figure 2.3.
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loads with subsonic speed, the solutions follow Eringen and Suhubi

[19]:

4g .8 '
n _1)8 - _d"s .
5011 ;ﬁ{;‘; sin Gd rs sin es ‘ ’
n (1+ s";)?‘ 48 8 I
6033--;ﬁ —'T—-sined-—Ts-sines‘.
n 1 ‘ Zed(Zsi - ei + 1) 'st(l + ai)
6013 a = l- rd cos ad +——rs—— cos es , - (2.1)
and
e 1 | 28 (283 -62+1) 28,(1 + g°) I




R T I Wy ——— - - ——

2)2

R=(1+ B,

= 48st ’

2

st 1),

= 2 2 _
B=(1+ Bs)(ZBd 8
M, = %— 0 <M, <1

1' i 9 1 E ]

P L2 + (g0 ?1H2 1= ays

and Cq4 and Cg are respectively the dilatational and the shear wave
speeds.

The actual stress field due to the normal pressure is obtained by
superposition as the Faltung product of the impulse response with the

pressure distribution function p(x,), i.e.,

n n

dij = 6°1j * P(Xl) . (2-3)

Similarly, the stress field due to the friction force is the Faltung

product of its impulse response with the friction distribution func-

tion:

£ _f
Gaij = Gdij * ufp(xl) . (2.4)

We shall use dimensionless variables such that

g S-a-l;-l- a 813—3- c =-0—1—3-
EE P, 5 P, &2 P,
and
X X
i1 SL =_-1- 2—3
p(x) oo’ E=1"> L3




where ) is a dummy variable of g, and py is the average pressure in
the contact zone. The stress fields resulting from the normal pressure
and the friction force in the contact zone are respectively obtained

from Equations (2.3) and (2.4) as follows:

2
4g )
n B S
g, = P(k) - da
% R-[ le-nF+ a8 (g- 0%+ 2$
2,2 2
o =-A—gflp(x)‘(l+8) 5 - 4852 2)‘“’
LS S RN R TITLIY
2,2 2, 2
£ = -1 [(g = 0% + AI0(e - W+ A§]
(2.5)
and
2_ 2 2
2ueB. Ll o ‘(28‘8*‘1) (1 + g%)
f f*s d S ]
Oee = - ~IF— p(a)(g = ) - dx ,
= w A [(g-n%+n] (g-0%+4°
2,,.2 2, 2
of = 2ues (1 + B )(Bg - 8y) & fl pla) (e - a) a
5t R -1 [(g - A%+ Aﬁ][(s -0+ AE]
2 2,2
f “f s 484 J_ e |
g, = 2 5 dA (2.6)
= [(e;-x) A (e - 0%+ A

where A.i ® BiC » i=d,s.




When the pressure distribution function BYA) is given, the convo-
lution integral can be evaluated. The simplest case is when the pres-
sure distribution is uniform, P = 1, for which Equations (2.5) and

(2.6) become

1
gz = 7R (Byg = 48480)

no_ ___ 2,2 -
Op (1 + 8" ¥y 4sdssws]
B,(1 + sz) F
n d 2. 1nz%
%ez R e
G:E= Tt - a2+ 1) mF - (1+g) nF]
1+85) F
f o ugh Bs In(d)
S - w U
f 2,2
Opr = " 7R L484Bguq - (1 + 8" 9.1, (2.7)
where
;= tan'l(1 L) + tan'l(1 —) , o
1- _.-:T.
7
. (g = 1% + Af - 4
, = R i=d,s . L
Tog e Af 5

.
KR
Ll

The second case for which a parabolic pressure distribution, P = 3/2(1

PRy

- a2), is considered yields
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= 30 (8A2 - 6% ¢ 1) gy - 448 (A2 - £ v 1) g

2
~ABl2+ 5 nFy) - 4g(2+€gmmFIl},

N3, 2.2 ,2_ .2 2 2
Sre * TyR 17(1 + 8507 (Ag = £7 + 1) gy + 4848 (A = €7 + 1) o,

2 2
-af~1+ g2 2+ gnFy + agi2+ g FOI},

2

2
n =38d(1+8)

s 2 2 2 _ :
%% T[(Ad-i + 1) 'lan (As E°+ 1) 'InFs
+ 45(Agy - Awg)]
3ucB
f oot (002 - 2 2 _ 2
Tee W{(st BS+1)(Ad £°+1) In Fd

2

2y(a2 _ 2 . 2 _
+ (1 + Bs)(As g€+ 1) In Fe 4;[(Zed B + 1) Ag¥q
2 2_ .2
= (1 +8) A, ~ 2(8y - 8]}
o Bpllre) o, 2_ .2
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2.3 Temperature Field

The heating on the boundary is assumed to be caused principally by
the friction. The analysis is therefore one with a half-space sub-
Jected to a fast-moving heat source. When the mating surface and its
asperity are assumed to be adiabatic, the rate of energy dissipation
from the friction force is converted entirely into the heat input g

such that

Using the solution developed by Ling and Mow [20], we may obtain the

temperature field as

olg,z) =0, w<Eg<-1,
2
g Pt
- 1 ax) -8 -
e
2

Pe;

(xp ) /41 (g - ) Y

where

olg,z) = %53 is the dimensionless temperature,

0

Q(x) = g— is the dimensionless heat input,
o

Pe = %3 is the Peclet number,
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T is the temperature above the stress-free ambient temperature and qq
is the characteristic heat input (uspo). Q(a) is therefore identified
with p(r).

Surface temperatures for the case of uniform and parabolic pres-
sure distributions can be readily obtained by letting ¢ = 0. The

results can be expressed as

o lg) =0, mecE<-l,

(2.10)
and

¢s(z) =0, ~-<Eg<-l,

058) = _'%172' (@ -ghe+ Y2+ Zg(e e Y2

(wPe

-t n¥y, acecn,

2 (€) -(-P—jm ((1-6d Ug+ 02 (- Y2+ Lerg+ 0¥2
L]
e

-(5-1)3/2]-%[(5«*1)5’2-(5-1)5/2]}. l<E<a
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2.4 Thermal Stress Field

The impulse response of a stress field corresponding to the heat
input of a unit pressure is {8o}, which is conveniently separated into
the particular and the complementary solutions {&oP} and {so€},

respectively. Their expressions, following Mow and Cheng [22]3, are

2 2
- -3/2 Pz Pal
sagg = ;TES-)vI (_peg 1/2 -% + 1?_.. £ 5/2) exp(. _E?.) H(E) ,
e'Me
2 2
-3/2 P P r
P .. __2g (_ £ e -5/2) <_ e )
Sa._ = t1— ¢ exp{- —— | H(g) ,
%e Pe(wPe)lf2 2 ¢
p -3/2 ( Pecz)
§ s - £ g expl- H(g) , (2.12)
()17 L
aqgE =%- {(:1(52 + CZ)-3/4 [cos % 8 - sin % 8+ -g- cos 8 (cos -g 0

- sin g- 8)] + c353(52 + ;2)'2} H(g) ,

6°§C =% {Cl(a2 + c2)'3/4 [cos % g ~ sin % 8 + % cos 8 (cos % 9

- sin g- 8) + C3£;2(52 + cz)-z} H(g) ,

“gc =% {Cl(gz + ;2)"3/4 [% cos o (cos -g- g + sin g- 8)]
+ ;%7’2’ C?_szc(sz + 52)-2} H(E) (2.13)

3The equations listed are a corrected version of those given in the
paper,
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The thermal stresses are thus computed from the Faltung product:

= *
where §oij is the combination of the particular and the compliementary K
solutions. The results can be expressed in terms of convolution inte- f
grals, which are -
G.ij=09 -°<E_<_-1 ‘ |‘

g B
aij 3./.1 p(X) GO.ij(E - X,C) dx ’ -1 < Eil R
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%3 =]:l p(a) sa.ij(z = 2z) da, l<g<a (2.14)
in which
6°1j= 61j+ ga?j . (2.15)

1]
Equations (2.12) and (2.13), respectively, with the deletion of the

Note that the expressions for 839. and §3; . correspond to those in
1§

Heaviside function.

With the notation

2
5 -n/2 Pel
Sn ='/:.1 (g =) exp{- m da

and making the change of variable,

we have
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5 ° 3/3 3 ”;2 'f e 1/2 =t dt) X (2.16)
pIle 0 ‘

gquation (2.14) for the uniform pressure loading case, on the sub-

stitution of Equations (2.15) and (2.16), gives




g - | =0

gE " Ogg T % "0 fOr eciil,

2 E
2 ~C
s - --2177 S, - --3-T77 S, + "'SE'I7§ S. + &g, (g - a,z) dx,
T (e VT (T2 T g 01T S f-1 g
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Similarly, the stresses for the case of the parabolic pressure

distribution can be obtained as follows:
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2.5 Numerical Results

The numerical evaluation of the mechanical stress fields in Equa-
tions (2.7) and (2.8) can be readily obtained by direct substitution of
the data for loading and material properties. Figure 2.5 shows OEE =
agg + GZE for different depths . The traversing speed V = 15 mfs (600
ips). The solid lines represent the uniform pressure distribution and
the dotted lines represent the parabolic distribution. Because of the
load discontinuity, the stress component ogg has two singularities on
the surface, for the case of uniform pressure, at £ = #1. In the real
problem, the pressure distribution is closer to thé case of a parabolic
function, for which there is no singularity.

The temperature field for both cases is shown in Figure 2.6. Near
the surface, there exists a high-temperature thermal layer. The tem=-
perature decays exponentially with respect to the depth as we can
observe from Equations (2.9) and (2.10). As a result, the thermal
stresses under the moving load may be compressive near the surface and
become tensile at a certain depth where the maximum temperature gra-
dient occurs. Indeed, this is the case and illustrated by the numeri-
cal evaluation of the thermal stress fields in Equations (2.17) and
(2.18), and shown in Figure 2.7.

The maximum principal stress resulting from the combined stress

field is shown in rFigure 2.8 for depths r = 1.0 and 0.1. The

40




L1 C Celtan
. . TRt R e e e
~ o Y | T o Wt
PP . . . Lot .

R ) R

"UOLID LAy pUR 3unsS3ad pauLqWod 03 BNp SBSS3UIS |BIJURYIAY “G°Z dunbyy

Q\—x = 3

0'¢ G2 0°¢ 51 01 S'0

L. L | [ 1 _a (1 a 1 " . | .




‘92 a4nby4

*uoiliolaj 03 anp ssanjesaduad)

_“_ Q\—.x = w
0°¢ 2 0z 1 0t 0
1 =4 00°0
10°0
¢0°0 o
n
m 8
O
(o]
[+7]
£0°0
- ¥0°0
50°0




"UOL}I}44 0} BNP SISSIUISOWAdY] /7 danbiy

Q\—.x = 3




” "splats SSaJ3s

B - ﬂ\—.x =

§°¢

| T R

S

A

tedgoupag

3

‘g2 a4anb4

0°L G0 0

. N VR YO VPR SR "

- m.Ol N




compressive state of the thermal stress in the surface layer (Figure
2.7) is at a much higher level than that from the mechanical loading
(Figure 2.5). However, the combined stress field does become tensile
at a small depth and reaches the maximum principal stress at approxi-
mately a depth of one-twentieth of the asperity size. According to
Figure 2.8, a tensile crack will not o.cur because (°I)max/Po = 0.82

is less than one. However, the temperature and the combined stress
field strongly depend on the asperity size and the other parameters
mentioned before. The details on the study of parameter effects will
be given in Chapter 5. For the purpose of illustration, the maximum
principal stress field for a typical asperity size of 1 mm (0.04 in.)
is also obtained. These results are compared with the results obtained
with an asperity size of 0.5 mm (0.02 in.) in Figure 2.9. At a pres-
sure of 482 MPa (70,000 psi), the maximum principal stress reaches the
ultimate tensile strength., The distributive friction force of 241 MPa
(35,000 psi), using a coefficient of friction ue = 0.5, is well below
the ultimate shearing strength. Therefore, the crack could initiate at
a depth of 0.05 mm (0.002 in.) from the surface for a typical asperity

size of 1 mm (0.04 in.).
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CHAPTER 3
A THREE-DIMENSIONAL MODEL OF A SINGLE MOVING ASPERITY

3.1 Mathematical Model

In order to model a hot spot with a contact area that represents
better the actual case and to investigate the three-dimensional effect,
the three-dimensional problem of a single asperity moving with uniform
velocity over the surface of a half space is presented in this chap-
ter. The results can be used to compare with the two-dimensional
results obtained previously. This half space representation of the
seal is based on the same reasoning concerning the relative size
between the seal material and the moving asperity as used in the two-
dimensional analysis. The asperity contacts with the material on the
otherwise traction-free surface in a small rectangular or circular
region. The coordinates {xi} are fixed to the moving asperity such
that x, points toward the trailing direction of the motion, x, is per-
pendicular to the traversing direction, and x3 is a depth measure
pointing from the surface into the material, Figure 3.1. For the
rectangular contact area, the aspect ratio, t = b/a, is a significant
parameter for the three-dimensional effect. For large aspect ratio,
the asperity excitation is effectively a moving line load that was
presented as a two~dimensional plane strain solution in Chapter 2.

In the three-dimensional formulation the potential theory approach
in Chapter 2 is no longer applicable. Hence, the Fourier transform
method (Appendix I) is used throughout in analyzing the mechanical and

the thermal stress fields as well as the temperature field. The latter
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is also analytically checked with the Green's function approach,
Because of the complexity, the general solutions given in Sections 2,
3, and 4 for the mechanical, the temperature, and the thermal stress
fields respectively are left in the transformed space. The numerical
solutions in Section 5 apply specifically to three cases: a moving
rectangular contact area with uniform pressure (Case 1), a moving disk
with uniform (Case 2), or nonuniform (Case 3) pressure. In the inverse’
Fourier transform the multiple integrals for the mechanical stress
field are reduced to single finite integrals which are more suit;ble
for numerical computation. However, the temperature and the thermal
stress fields are quite complex and remain in the form of multiple
integrals, for which numerical evaluations are obtained using a Simpson
adaptive scheme in conjunction with a Gaussian-type quadrature (Appen-
dix II). This numerical scheme is proven to be effective since it
checks with the numerical result for the temperature field obtained
from the Green's funciion method from which the resultant in;egra?s are

much easier to evaluate numerically.

3.2 Mechanical Stress Field

Basic Governing Equations. The governing equations come from Cauchy's

law and Hooke's law. In terms of the moving convective coordinates
{xi} and with the absence of body forces, the acceleration in
Cauchy's law will have only convective terms. They are:

B 2 4
aj 9 5 Ve 33quy o (3.1)

“Summation convention is used for repeated indices of roman minuscules.
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dyy = Adusy s+ ulagug + o) . 13k = 1,2,3 (3.2)

ij

where uy is the displacement field, a?j is the mechanical stress field,
aj denotes partial derivative with respect to xj, 61 j is the Kronecker
delta, V is the asperity traverse speed and p, A, and y are materijal
constants. The method used to solve the equations above is similar to
the one used by Eason [21].

Equations (3.1) and (3.2) are conveniently solved by the method of

double Fourier transform with respect to (x;, Xj)

P » i(; X ":;X )
(X, % pxy) =%;f / Flx | xp0%y) € 1717272 dx; dx, . (3.3)

Hith the use of the relation

QPSSR -
3. f (=i xr) F, r=1,2,

Equations (3.1) and (3.2) become

- M M2 = . A
ixr 9 jp +D 9353 pV X{ 5 J=1,2,3;r=1,2, (3.4)
and
M == g L == -
Opg 1A X 8. 1u(xrus + xsur) + ADu35r,s
M = ={ux U u =
a3p = ~TuX, Uz + wbu, ksr,s = 1,2 , ]
-M , - - >
dq3 faxeu, + (x+ 2u) Du, (3.5) o
]
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p subject to the boundary conditions

3
h
M -
o g3y = Ry at x5;=0 (3.6)

and

where the transformed quantities are denoted by a superposed (7). Rj
is the traction on the surface x3 = 0, D denotes derivative with

respect to x3 and the index i = 1,2,3,

Displacement and Stress Fields. The solution of the set of ordinary

differential equations (3.4) and (3.5) is obtained by combining
Equations (3.4) and (3.5) with the result

’

2 2 _ 2\ _ = _Tw (.2 - L iT (a2 o -
[o® + (M2 8%) X x2] uy xlxz(s 1) u, 1x1(s 1) Du3 =0
=2y = 2 2 0y 22 L 2221 v (a2 1) e s
xlxz(a 1) u, + (p° + (M2 1) X; = 8 xz] Uy ixz(s 1) Du3 0
-1%, (8% - 1) 0, - i%,(8% - 1) 05, + (g% + 0 - 1) % -R1Ty =0
(3.8)
in which
. 12, e V3 2 _
My = Vi) ; My = VBT 8° = (A + 2u)/u .

Equation (3.8) is a system of three simultaneous homogeneous linear
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equations for three unknowns {uj}. For nontrivial solutions the
determinant of coefficients should be zero identically, that is

02 + (Mg-sz) i‘f - 'x'g - ‘iliz(sz-l) -ii’l(ez-l) D
-, 2 2 2 ., =2 _ ,2=2 T (.2,
A= -xlxz(s -1) 0= + (M2 1) X = 8 X, ixz(s 1) D
- (.2 i (a2 2.2 2.,y =2 _ =2
-ixl(s 1) D 1x2(e 1)D D" + (M 1) Xy = X

2 202 - 2y (n2 - n2)2 -
8<(D "1) (D "2) 0o,

where the distorted distances are

LR L2 221/2 .
. (x1 + X Mixl) s r=21,2.

Hence, Equation (3.8) results in

(02 - nd) (0% - nd)% (@), T,y Ty = 0 (3.9)

whose solutions, with the consideration of the regularity condition

(3.7), are

“N,X -N,X
- 173 273
Uy 1 + (B1 + clx3) e s

[
>
o

-ny X -n,X
13, (B2 + C2x3) e 273 ,

c
NG
"
>
IX)
[

-n, X Do
- . 173 -N, X e
Ug = Age 7+ (By +Coxy) @273, (3.10) -

where the coefficients {Ai’ Bi’ Ci,} are independent of xj.
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Substituting Equations (3.10) into (3.8) gives certain relations

between these quantities as follows:

i')?r
Ar’-ﬁ-l—-A:;, r=12,
X,8, + x,B
B, = -1(_l_l_ﬁ__3_3) ,
2

and

Cj =0, ji=12,3.

A3, By, and B, are to be determined by the surface tractfon condi-
tions. Thus, Equation (3.10) can be rewritten as

iX,A, =-n.x -n, X
i - DA S
nl 1

iX,A, -n.x
ey v I o B

-f1,X
- 2”3
Yz ny . 2 ¢

U, = Ae --i-(‘;?B 4!*3('B)e.“zx3 (3.11)
3 3 nz 1°1 272 * *

Expressions for the transformed stress components may be obtained

by the substitution of Equations (3.11) into (3.5), 1In particular

-2 2
xMixl - Zunl

"

-n, X A, X
- . 1%3 - = 2%3
a33 A3 e + 'iZu(XlBl + xZBZ) e R

-n, X “N,X
B 13y == 2, 2 2%3
935 12uX,Aqe > [lezal + (n2 + xz) BZJ e ,

-n, X “n,Xx
- e io= %3 _y o2 =2 - - 2*3
531 i2uX| A, € —-n2 [(n2 + xl) B1 + x1x282] e . (3.12)
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In view of the boundary condition (3.6), A3 and By, B, can be

readily solved and expressed in terms of Rj.

R - I R = e
2uFA, n1[(x1 * X5 = 3 Mox)) R's + 'inz(xlli'1 + xZR'Z)] R

I 1 2,2 _ 1,222 . 2,2 =2
2uFB; = -1x;n;n,R, + W {[?;(xl *G -3 sz1 2nin,) + my(xy + X

N

7 B Ry - G5, + %5 - 5 % - 2npny) Ry,

R Ny S S G
2 ”‘2"1"2“3*:12{"1"2“1*"2 z M

2uFB

-2 _ 1,22 _ 2 =2 _ 1 222
+ L—xiﬁf * X5 - 3 MoX] = 2nn,) + no( X Mx1)1 Ry} .

(3.13)
Following the substitution of Equations (3.13) into (3.11)

- - -2 - X3 ) -
2uF Uy = (1x1n3'R'3 xlnzﬁl xlxznzﬁz) e I1x1n1n2'§3

-2
X X, X -n.,x
%2, . 1%2 | TNaX3
[— (n3 2n1n2) + n2n3] ﬁl + (n3 2n1n2) ﬁz ‘ e R

S - ) M%3
2uF U, (ix2n3'ﬁ3 "1"2"2?1 "2"2?2) e R

- l 1'7(?_n1n2 3

2

-2 -
- T -2 (n. - 200, + 7 le 2"
(ny = 2n;n5) Ry =1 5= (ng = 2nyn,) + nyng 2| ’




-n, x
- - - 173
2uF Uy (n1n3§é + i lnlnzﬁi + ixznlnzﬁé) e

-2 =2 - - “NaX4
- [nl(x1 + X5) Fs + ixlnéﬁl + ixznéﬁzl e , (3.14)
where

2, =2

. 1,22 =2
Ny =X +% -3 M2 ) .

= nd - -2
Xy » F na "1"2(x1 * X

Stress components can then be determined by the substitution of (3.14)

into (3.5) in accordance with the new variables as follows:
Ny = ng = 2nny 5 Ny = Ny/ny 3 B = n3ﬁs + inz(le1 + XoRy) .
Thus we have

-Nn,X
2F T =B I+ -nda+ 27 e PP -2 @R,

2
¢RI, + ] B - KT b e 20,
2F B, =T LR+ -0 v 2l e L2 - 2uf%nn R
- f?i?%Nzﬁi + 1x,[x Ny + nynal Ry} e-n2x3 ,
2uF 3§3 =‘§t(7§ +'§§ - ni) A - 2un§] e-n1x3

-nx -
2 . =2, = - - 2%3
+ Zunz[(x1 + xz) mR, + in3(x1ﬁi + xzﬁé)J e , o

R $oe ‘ .
e Tet e ATt et
RSP e T S,
o a e sl sy a0y

. .l.l.l"'
catalatatalaal
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n,x

M, 173 - i
2uF 9y, = 2ux;x,B e 2uﬁlx2n1n2ﬁ3 *z x2["2"3

J z . i= -2 _ =2 N3
(x] = X3) N,J Ry + 5 X;[nyng + (X] = X5) N1 Ry} e ,

n. X

2uF 3’33 = -2,i%,n,B e 173 A

+ u{172ﬂ1(721 + X+ ng) R,
2X X, N0 R" .- 2N, + nq(n? + X1 X } e-n2x3
172717271 1"1 3'72 2 2 ’

“N%3 =2

ML= - =2 2
2uF 95, = ~2uix;n;B e + u{iXn, (x] + X5 + ny) Ry

- [YZN +n (n2 +?2)] R, = 2Xx,Xx,n,0,R e-n2x3 (3.15)
2"1 32 1 1 1727172 2} ‘ *

The general solutions of displacement and stress fields are left in the
Fourier transformed expressions (3.14) and (3.15). The actual fields
are to be obtained through an inverse transform after the substitution

of the specific boundary values {Rj}.

3.3 Temperature Field

The heat equation with constant thermal properties, assuming

quasi-steady state and no heat generation in the medium, as expressed

in terms of the convective coordinates {xij}, is
2T =L a1 (3.16) U
i’ %1 ) :

where « is the thermal diffusivity. Z;f:'..'j
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The boundary conditions at x3 = 0, are

-q(xl, xz) » in the contact region

ka3T s (3.17)
0, elsewhere

T, aiT +0 as (xixi)]‘/2 o, (3.18)

Note that T is the temperature above the stress-free ambient, k is
the thermal conductivity, q is the heat flux (-R;V = ufpv), where ug is
Coulomb coefficient and p is normal pressure distribution on the sur-
face x3 = 0. It is assumed that the mating seal which contains the
asperity is an insulator.

The double Fourier transform of Equations (3.16) through (3.18)

become, respectively,

2 -(s2+imMlT=0, (3.19)

JE(Yi, Yé) , 1in the contact region
kDT = Q = (3.20)
0, elsewhere

T+0 as x3+=, (3.21)

where 52 = ?f + Ig and n = -(V/x)'?i. Now Tet T = ?1 + i?é and 57k =

Fl + in, then Equations (3.19) and (3.20) result in
2 .7 L7
(D s°) T1 nT2 .
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(3.22)

(3.23)

Also, (3.21) becomes

Tl’ T2 + 0 as Xg > @ . (3.24) -

Equation (3.22) can be expressed as a fourth-order homogenébus

ordinary differential equation which is - L

2

[04 - 2s D2 + (n2 + 54)] ?} =0, r=1,2, (3.25)

In view of the regularity condition (3.24), the solution of Equation

v
(3.25) has the form o
- -UX3 \::
T.=e (A, cos(ex3) + B, sin(exs)] (3.26)
where
(s* + n2y M2 sz] 1/2
9 = 2 ’
w = ? . ...\:‘
Substituting (3.26) into (3.22) and (3.23) gives ;T;.
 Po= A+ 8B, r=1,2 (3.27) ‘ ix}

and

.....................
................




Al 3 - Yy 82 ’ (3.28)
= n
Bl 75 A2 . (3.29)

Hence, we have four equations for four unknowns A;, A,, B; and B,

which can be readily solved.

2

267 + 1P,
Zu:(ubz + ez) |

Al =

2—
Py

2wlw” + 87) ’

P, - 2w
A, = —L

ZezFi - nﬁé
B, = —_— 7
26(w” + 8°)

WP, + 20%F,
B, = (3.30)

ze(a:z + 92)
Following the substitution of the expression (3.30) into (3.26) and
according to T= ?1 + i:r-z, we obtain T as

-— 'mx3

T=e > {[C; cos(exy) + C, sin(exy)] Py

+ [C4 coslexy) + G, sin(ex;)] Py}, (3.31)

1
4

where

LU .
G N e te e
PRV SRR
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¢ = c2a%+ dn

1 20w + 07) ’

2
C. =28 *1n

2 29(«;2 + ez) '

Cos s 12m2

3 2ulel + 80)

- 2
¢, = -0t 120

4 20(0° + 6% )
Again, the temperature field is left in the Fourier transformed expres-
sion, which will be used in solving the thermal stress field. To be
complete and also for comparison, the Green's function solution
approach for the temperature field is given in the following.
The Green's function solution, following Carslaw and Jaeger [47],

can be expressed as

' 1
g{x, = X}, X, =~ X, Xq, t =~ t') =
S Ll B L toclae(t ~ £33

[(x, = x') = V(t = t1% + (x, - x))% + x&
1 1 2 2 3
[ 4 eXp ; - 4K(t Py tr) } (3.32)

which is the temperature at time t at the location (x,, x5, X3) due to
the unit heat flux input emitted at time t' at the location (x;, x;.
0). It can be easily shown that Equation (3.32) satisfies the
governing heat equation (3.16).

The temperature field can be obtained by the convolution integral

' e
Tttt
]

s [T
PN RN
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= t ) - - ! - ! ' [
T(xl,xz.x3,t) ./; q(xl.xz) Ko(x1 X1s X5 = Xos X35 t-t') dx1 dx2
H

(3.33)
where By indicates the heat-flux input region and

t
= - y! - y! - ! '
K° ./; g(x1 X1s Xy = Xgs X3, t-t') dt' . (3.34)

After substituting (3.32) into (3.34) and changing the variable by

letting t = R/2/x(t = '), Ko becomes’

V(x,=x3)/2¢
1™ - 2,022, 2.2
K°=e eT (VRIIGKf)dT (3.35)
4 kR R/2/xt

where p = density

(2]
L]

specific heat
kK = pCx

241/2
Lz,

=
]

_02 IR
[(x1 x3)° + (x, = x5)¢ + x

For the steady-state solution, i.e., t + =, Equation (3.35)
results in

G(x1 = X]» X9 = X5 x3) = 1im K°

tror

-V[R = (x, = x})1/2
’ﬂR‘i o 1 e (3.36)
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Accordingly, the steady-state temperature field can be obtained as

-V[R-(xl-xi)]/2<

_ 1 1 L1y € ' '
T(xl.xz,x3) =5z ./; q(xl,xz) R dx; dx; (3.37)
H

which will be employed to give numerical results for different cases of

application.

3.4 Thermal Stress Field

The gover=ming equations for the thermal stress solutions are based
on the theory of quasi-static uncoupled thermoelasticity. The

governing equations are then

;.v"'uj + (X + p) 3j(3k”k) = (3x + 2yu) aajT (3.38)
and

T = -

subject to the boundary conditions

cgi =0, i=1,2,3 at x,=0, (3.40)

The double Fourier transform of Equations (3.38) through (3.41) are

(02 - (a,X% + XA T) = a,x R0, = 1a,%,00; = ~a,%,T , (3.42)

- 2 - -

- — - 2- - —2 --. —=-. pog
X XUy + (b (alx2 + xl)] U, 1a2x20u3 1a3x2T R (3.43)
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(3.44)
m=-i(a7§' + a,X,0,) +a,0u, = a,T (3.45) TN‘::
u 17171 47272 4773 3 . :;
-T .
:z—za-i(afﬁ' + aX,0,) + a,0u, - a,T (3.46) 1'
m a¥1Y1 T 31%4; g3 = a3l » . '
. ¢ :
733 1 i, (RyT, + T,E,) + 00, - a,T (3.47) B
o
012 —_—- —_— Ll
== -i(xzul + xluz) . (3.48) - 4

-]

T o
23 _ = _ o=
=== Oy, - ixyuy , - (3.49) —
_T ‘:j-.
Bl -ixg (3.50) E
u 1 1 3 ’ ° _:q
3

- ]
5340, 121,23 at x;=0, (3.51) 3
5. Ge0as FRPYVE.., (3.52) 3
where a, = A/u, a; = a, + 2, 3, = a, + 1 and a3 = (33, + 2) a.
]

Having a known temperature expression as in Equation (3.31), we e
S

may choose the solution for the displacement components u, and u, in

the form




LT

- “wXs
u, = g(x3) e (3.53)

where functions f and g are to be determined later by combining Equa-

tion (3.43) and Equation (3.42) which results in

(0% - AR5, - X)T,) = 0 .

Considering Equation (3.53), it follows that
;i
f==g. (3.564)
X2

Equation (3.42) can be rewritten as

= 4 -T2 =2 = | 2e =
ou, = — [-1a,X,T + (a;x] + X5) U = D7up + a,X X u,] . (3.55)
271

In view of 0233 obtained by taking the differentiation of Equation

(3.55) with respect to x3, it follows from Equation (3.44) that

R R 2. w2 = . mm = = T
u3 :-f—;?[ alD ul + (als + ale) Dul + alexzDuz 1a3XIDT] -(3.56)
21

Differentiating‘ﬁg with respect to x3 and then equating the result with

Equation (3.55), the ODE governing the displacement field becomes

4 222 . 2, =2 _ =2y n2= _ 2, =2, =2 =
alo uy + (alx1 +sTrax; ale) D u - s (alx1 + xz) uy
- = 2= 2= = — =2 . 2y T
+ alexZD Uy = a,8°X X Uy = 1a3x1(0 sy T . (3.57)

‘)

., . .
.ty vy LA
I WP AL L I

’ 'l ‘l ..
retelint,
» -. - -



From Equations (3.31), (3.53), and (3.54), Equation (3.57) leads to

-049 + 4@039 + 2(s2 - 3w2) ng + 4meZDg - e4g
2,y _
= EI- xzme[(B2 - 181) cos(e x3) + (A, + iAl) sin(g x3)] (3.58)

where A;, A,, B;, and B, are the same as in Equation (3.30).
The complementary solution of Equation (3.58) (gH) is obtained

by solving the corresponding characteristic equation which is

-m4 + 4mm3 + 2(s2 - 3m2) m2 + 4u02m + 94 = 0

or

m-w-s2m-w+s)?=0. (3.59)
Taking account of the regularity condition the complementary solution
is

((l)'s) x3

g = () + hyxy) e (3.60)

where h, and h, are contants of integration.
The particular solution of Equation (3.58) (gP) is determined by
the method of undetermined coefficients as follows.

P a a3§é (G, cos(e x,) + H, sin(9 x,)] (3.61)
g Zajwe -1 3 1 9 X3 .

where Gl = Bz - 131 and Hl = "Az + iAl.
With gH and gP known, the particular and homogeneous solutions

of Ui can be readily obtained {




X -SX
— 1 3
uj == (hl + h2x3) e R

X2

-sx
—C 3
u, = (h1 + h2x3) e ,

-sxa

- _ _ i
Uy = - —— l[apslhy + hyxy) + (ay + 2) hyl e °,
A, X
2%2
a wkg

P s Fr [G_ cos(e x,) + H_ sin(8 x,)] e- r=1,2
r Zalme r 3 r 3 ’ L

- 33 -(Iix3
uy = 25;;3 [63 cos(e x3) + H, sin(e x3)] e (3.62)
where
6 =G, H =M
G3 = "i((llsl - BHI) ’ H3 = -1((DH1 + 6G1) .
As a result, the general solutions are
- _ =P -C
up = Uy eouy . (3.63)

The two unknown constants h; and h, will be determined by substituting
Equation (3.63) into Equations (3.47) and (3.49) and employing the

boundary condition (3.51). Thus we have
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ax

- 2
za—l—?-u;[a seH +(S als(w-ale)Gl].
3,

a.x.
3"2 - -
h, = 231— (~so Hy (s sw + 2,8 ) 61] (3.64)

Following the substitution of the displacement solution, (3.62)
E through (3.64), into Equations (3.45) through (3.50), the thermal

stress field can be readily obtained.

-T
Ull '(BX3 ‘SX31
3'1

—_z ("blH1 + bzGl) e + (=b.H, + b4Gl) e ’

Xy -sx31
- = i ('bsHl + bGGI) e + (-b7H1 + b G e .

o

4 “wX -SX
33 3 3 3

wX

TwXq =SXy
== = X X (=bygHy + byGi) e T+ (=byH) + bG) e ]

3;3 [ “uky ~SX3]
= 7% L(b17H1 bigGy) & 7 - (bygH; = bygG,) e |’

il i “uXy =5X4°
— 2 -xl L(b17H1 - blGGI) e (b19 1 DZOGI) e , (3.65)

o

where :.:::‘

! v r
ol

A

A
L e e
el Lla Lt

I.’/‘l’.l'
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~(n + 124%) B, + (247 - 1n) 7,

H, = = i(C,P, + C,P,) ,
1 2m(m2+62) 1'1 32

(n - 1202) 'Fl + (Ze2 + in) 15'2
G, =
1 2

= -i(Czrl + C4F2) ’

) 20(u” + 0°)

b b, = -.:3— [2we cos(ox.,) - % in{ax,)]

o 1" 3w 3 1S 34

3 b =-—al- [;2 cos{ex,) + 2we sin(ex,)]
2 " agwb 1 3 w 34

= ~2
b =i§.<x1 + IS _xl x3)
’
w \3,5  aja, a,

b = 3, [31“'5-2 r(se - s)

_ -2
4 " 38 a,s X+ a, t s - w X x3] ’

-a3
5 a lue

(2we cos(ex3) - 7% sin(ex3)] R

-a
3 .
b * Tmon [X5 coslex;) + 2ue sin(ex;)] ,

-2 -2
bo = i}_ <x2 + IS . *2 x3>
7 u azs a]_a2 al

a a;m =~ S 2
-3 1 = _ r(se - s%) - ) T2
bg 2w [ s %2 * 5, + (s = w) % "3] ,

'3352




QSZ

- 3
big 'a'l'EE°°S(°x3) s
2
a,s
byy = = =

11 a0 Xy »

b123a—1-u—)é-[1+ (s - w) X3] ’
a3
b13 = W sin(6x3) ’
a3
P14 T " T Coslexg)

33 dlw - S

a

= 3 -
by4 W[ 9 cos(ax3) + sin(ex3)] ’

-a

- 3
big a—ﬂ'é- [w cos(ex3) + 9 sin(ex3)] ,

a3

19 " 3 (-1 + sxq)

) T
20 ajub [0 + s(w = s) X3J s

: '1
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Note that P, and P, are the real and imaginary part of Q/k.
Therefore

Fl = 2%;/; Q(xl, xz) cos (lel + szz) dx; dx, ,

H
1 . g -
FZ = m'/B' Q(xl, xz) sin (xlx1 + xzxz) dx, dxz . (3.66)
H

For the case P, = 0, Equations (3.65) become

-1

911

“uX
=== Fl (b,Cy + b,C,) e

3 =SX3
+ (b3C1 + b4C2) e ] .

=T

922

“wX

-s$X
3 3
+ (b7c1 + bacz) e ] ’

-7

933

“wX

3 TSX3
= (byyCy * by Lol e ,

-T .
22 s xrlc +b cye
5 = Prxp%p|(by3Cy * b0

-

mx3 'SX3
+ (blscl + blscz) e >

3 oo “uX3 "SX3

-(I)X3 -SX3
- (b19c1 + bZOCZ) e . (3.67)

3.5 Numerical Results

Previous sections have shown the general expressions for the

transformed mechanical and thermal stress fields. After applying the
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inverse Fourier transform and following through the simplification of :
% the multiple integrals, results for several casés can be obtained =
X numerically.
3.5.1 Rectangular Contact Area with Uniform Pressure (Case 1) ‘_i:J
Mechanical Stress Field L
S
The tractions of the mechanical loading are 3
933 * -R3(x1, X2s o) , 030 = R, =0, o4 = -Rl(xl, X2» 0) - :
where 1
p, = constant , Xy L3 x, <b
R3 = :’ *j
0, elsewhere S
R =2 “u R . .:
1 73 ]
-1
The corresponding transformed boundary conditions can be readily N
obtained o
- - (X, Xx,+X,X,) s
- - .1 17177272 -
R'3(x1, Xy 0) 2—;/; j:' Ry e dx; dx, =
"1
b ,a (X, Xy +%,X,) 2
1 f 1%1772%2
= P e dx, dx
Wy Jo, 0 1 7% -
p b iX,x a i%x i
0 f 272 j‘ 11
= e dx e dx AR
= [ = 2} [ = :
2 _ _ |
= —— sin(x;a) sin(x,b) ,
X, X, -
172
ﬁl = -uf §3 ’ Ez =0 . (3n68)




By following the substitution of (3.68) into (3.15) and applying the

inverse transform, the mechanical stress components can be expressed as

{og5} = {5} + {of;}

I where the first term on the right-hand side of this equation denotes
the stress components resulting from the normal loading ﬁs, and the

sacund the frictional loading ?1. The expressions are

, |
P p2n - =Sy, X =Sy, X
. n . Po cot 1,2 _ .2 1*3 _ 2%3
. 1 " ;‘Zj(; R ,/; [Ys(l tztp - t)e Y2 © ]
»
P 2r @
. 1
' o9 = '70‘./ A sTn i cos ¢f {[73(2' & - 1) M% cos? ¢ + sin’ 4]
i = Y0 0
1 -5y, X -Sy,X
. . e 173 . 1Yz sin2 o € 2 3}N(s,¢) ds d¢ ,
i n _ o fz" 1 [z M TN
o 9337 77 H sin 4 cos & Y3 Y1Y2
- T 0 0
. W(s,¢) ds do ,
:

P 2% o =Sy, X =Sy, X
522=_%j; Flf ) {’%e 13-Y1Y2e 23]&4(5,& ds d¢ ,
W-

KT AT

-iP 2r  Y,Y o [ =Sy, X “Sy, X
no_ 0 1'3 173 _ 273 1,
993 _1?_'/; Tooss . [e e ]N(s,«p) ds do ,

5

-iP 2r  y,Y ® [ =Sy.X =Sy, X s
no_ 0 1'3 173 _ 2731,
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={pP 2x o snx
f .__fo 1 2 212 -l 3
mn 2 j; Tsin ¢j; {Yz cos” ¢(1 +x My - My) e

n
(v3 = 2vy7,) -SY x
_[ 37 vl 2, Yz*s 23 is,) ds do
12
miy P : =Sy X
. 4 2 2 173
922 2 /; Hsin ¢ ¢f 2[( = Mi cos” ¢+ sin” el €
(v = 2v;7,) TSYgX
+ [__—_-3 127 sin2 y|e 2 30 0(s,0) ds do ,
T2
£, Turfo Il e -1
o - f — ¢f f_( cos® ¢ - v;1
-SY X -SY X
. e 13+Y3e 23;“(5»¢) ds d¢ ,

] 'iufpo 2% Y, - 2 °S‘71X3 1 (Y3 - 2Y1Y2)-
012'_—“2_./; mo cos s € ’ -?

Y2

x|

. (sin® b - cos? b) + vy, ] e 2 W(s,) ds d¢ ,
’ |

“ugPy 27 YYp o [ TSYyX TSYX
of, = =0 [TILZ [T T3 L o T3 s, ) ds dy
23 ¢ Jg H Jg

n

£ “uelo N

2x 1 ‘/"' 2
S - _ Y,Y, COS” ¢ €
1=z J, Hs1n¢COS¢0[12

=S¥y, X
2 3] W(s,s) ds do , (3.69)

- (Yg =YY, sin? o) e
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where
U(s,o) = Sinfsa cos ¢) sin(sb sin o) e'iSY cos(o ~ ¢)
? s ,
Y =.(x§ ¥ xg)llz ’ v3= {1~ %‘Mg cos? ¢) ,

Ty = (1 - Mi cos2 ¢)1/2 , t=1,2,

X
H=Y§-1172, e=tan1;(%.

Equations (3.69) can be reduced to single integrals by using the

techniques of change of variables and the following equalities:

sin(sa cos ¢) sin(sb sin ¢) e°sth3

= cos(sy cos(s - ¢))

-SY.X
a %“é e ©° {[cos s(a cos ¢ = b sin ¢ = vy cos(s = 4))

+ cos s(a cos ¢ = b sin ¢ + y cos(e - ¢))]
- [cos s(a cos ¢ + b sin ¢ - y cos(s - ¢))

+ cos s{a cos ¢ + b sin ¢ + y cos(s - §))1} ,

sin(sa cos ¢) sin(sb sin ) e-sth3
5

sin(s v cos(e = 4))

[sin s(a cos ¢ - b sin ¢ + y cos{e - ¢))

~ sin s(a cos ¢ = b sin 4 = vy cos(e = ¢))]

- [sin s(a cos 4 + b sin ¢ + y cos(e =~ 4))

-~ sin s{a cos 4 + b sin ¢ - y cos(s - ¢))1} ,

f e gin(sh) ds = tan”t (%) ,
0 S
- @ 2 2
1 -sd = 1 -sd -1 h™ + d
j; e cos(sh) ds j; se ds 5 1n (——dz——) .
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The term fo"%e ds cancels out during simplification. Thus, the

stress fields are expressed as

n cot 2
°11 = 7[ —-——Q [Y3(1 + 3 M§ '. Ml) Sl - Yleszl ds ,

922 * 2 f R s1nT {[73('5 & - 1) Mi cos’ ¢+ sin? 4]

2
. Sl = Y1Y2 sin” ¢ 52} d¢ ,

LN S WY ¥ NP
%33 7527 J, Wsiazg “¥3d1 T M2 9

L T A S
12 w2y T T e L

Y1Y
no_ 173 -
923 Zf Tcos ¢ - Wyl do
n . 1173
931 2 Tsng oM ~ Yl de,

x
N
B

£ _ P 1 W - u2)
1 _Tf TS K cos” 4(1 + 745 - M) Wy
(Yo = 2v,v,) R
- [_3_74_2_ s-[nz 